The deformed exponential functions of two variables in the context of various statistical mechanics
نویسندگان
چکیده
In the recent development in various disciplines of physics, it is noted the need for including the deformed versions of the exponential functions. In last two decades, the Tsallis and Kaniadakis versions have found a lot of applications. In this paper, we consider the deformations which have two purposes. First, we introduce them like beginning of a more general mathematical approach where the Tsallis and Kaniadakis exponential functions are the special cases. Then, we wish to pay attention to the mathematical community that they have a lot of interesting properties from mathematical point of view and possibilities in applications. Really, we will show the differential and difference properties of our deformations which are important for the formation and explanation of continuous and discrete models of numerous phenomena.
منابع مشابه
Different Magnetic Field Distributions in Deformed Neutron Stars
In this work, we review the formalism which would allow us to model magnetically deformed neutron stars. We study the effect of different magnetic field configurations on the equation of state (EoS) and the structure of such stars. For this aim, the EoS of magnetars is acquired by using the lowest order constraint variational (LOCV) method and employing the AV18 potential....
متن کاملExponential membership function and duality gaps for I-fuzzy linear programming problems
Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...
متن کاملA possible deformed algebra and calculus inspired in nonextensive thermostatistics
We present a deformed algebra related to the q-exponential and the q-logarithm functions that emerge from nonextensive statistical mechanics. We also develop a q-derivative (and consistently a q-integral) for which the q-exponential is an eigenfunction. The q-derivative and the q-integral have a dual nature, that is also presented.
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملFree Vibrations Analysis of Functionally Graded Rectangular Nano-plates based on Nonlocal Exponential Shear Deformation Theory
In the present study the free vibration analysis of the functionally graded rectangular nanoplates is investigated. The nonlocal elasticity theory based on the exponential shear deformation theory has been used to obtain the natural frequencies of the nanoplate. In exponential shear deformation theory an exponential functions are used in terms of thickness coordinate to include the effect of tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2011